Qu 1. (a)	[R = n0. of red bods in Aliva's bracelet] R = B(18.0.14)			
	[R = no. of red beads in Aliya's bracelet] $R \sim B(18, 0.14)$		3.3	
		(1)		
(b)(i)	D(D 1) 0 10402 (0 104	D1	1 11	
	P(R = 1) = 0.19403 awrt 0.194	B1	1.1b	
(ii)	P(R4) = 1 - P(R ,, 3) = 1 - [0.76184]	M1	3.4	
	= 0.2381588 awrt <u>0.238</u>	A1	1.1b	
	Description 0.144, he constant as used a lower members floor he is the	(3)		
	Requires $p = 0.14$ to be constant so need a large number of beads in the sack to ensure that removing 18 beads does not appreciably affect this probability, then it could be suitable.	B1	3.5b	
		(1)		
(d)	$H_0: p = 0.14$ $H_1: p \neq 0.14$	B1	2.5	
	[X = number of red beads in the sample] $X \sim B(75, 0.14)$	M1	3.3	
	$P(X_{,,}, 4) = 0.01506$ or if B(75, 0.14) seen awrt 0.02	A1	3.4	
	$\{0.02 < 0.025 \text{ so significant } \underline{\text{or}} \text{ reject } H_0 \}$ There is evidence that the proportion of red beads has changed	A1	2.2b	
	There is evidence that the proportion of red ocads has changed	(4)		
(e)	<i>p</i> -value is $2 \times "0.01506" = 0.030123 = awrt 0.03$	B1ft	1.1b	
		(1)		
		(10 marks	-) 	
<u> </u>	Notes		<i>)</i>	
(a)	B1 for B(18, 0.14) accept in words e.g. <u>binomial</u> with $n = 18$ and $p = 0.1$	4		
(ii)	B1 for awrt 0.194 M1 for interpreting "at least 4" Need $1 - P(R_{1}, 3)$ and $1 - p [0 A1 for awrt 0.238$			
(c)	B1 for mention of <u>large number of beads</u> and need for $p = 0.14$ to be constant for it to be suitable. Do NOT accept e.g. "events are independent"			
	B1 for both hypotheses correct with use of p or π M1 for selecting a suitable model: sight or correct use of B(75, 0.14) May be implied by sight of 0.015 or better or [P(X > 4) =] 0.9849 i.e. 0.985 or better 1 st A1 for use of the correct model awrt 0.015 (accept awrt 0.02 following a correct expression) Allow 1 st A1 for awrt 0.985 only if correct comparison with 0.975 is seen. Sight of B(75, 0.14) and P(X ,, 4) = awrt 0.02 scores M1A1 <u>No sight</u> of B(75, 0.14) <u>but</u> sight of awrt 0.015 scores M1(\Rightarrow)A1[Condone P(X = 4) =] 2 nd A1 (dep on M1A1) for a correct conclusion in context mentioning "proportion", "red" and			
	"changed" If there is a statement about H ₀ or significance it must be compatible. May see CR i.e. X ,, 4 (mark when prob seen) and X18 (prob = 0.01406) Ignore upper limit NB for information $P(X = 4) = 0.0104$ and can only score M1A0A0 if B(75, 0.14) seen			
(e)	B1ft for awrt 0.03 Allow ft of their probability in (d) provided at least 3sf used			
SC	NB an answer of 0.02 in (d) leading to 0.04 in (e) is B0 Use of CR will give significance level of $0.01506+0.01406=0.029$ score B1 no ft			

Que.	Scheme	Marks	AOs		
2(a)	$[H_1:] p \neq 0.25$		2.5		
		(1)			
(b)	<i>X</i> ~B(50, 0.25)	B1	3.3		
	$[P(X_{,,} 6) =]0.0194 \text{ or } [P(X_{,,} 18) =]0.9713 \text{ or}$ $[P(X_{}19) =]0.0287$	M1	3.4		
	$\underline{\text{or}} X,, 6 \underline{\text{or}} X19$				
	$[P(X_{,,} 6) =]$ awrt 0.0194 and $[P(X_{} 19) =]$ awrt 0.0287	A1	1.1b		
	CR: X,, 6 or X19	A1	1.1b		
		(4)			
(c)	[0.0194 + 0.0287 =] awrt 0.048	B1ft	1.1b		
		(1)			
(d)	(Do not reject $H_{0,}$) there is insufficient evidence to suggest that the proportion of those with the allergy differs from 25%/ Rylan's belief not supported	B1	2.2b		
		(1)			
	»	(7 marks)		
	Notes				
(a)	B1: correct alternative hypothesis may be stated in terms of p or π Ignore null hypothesis if stated				
	Mark part (b) and part (c) together				
	B1: setting up a Binomial model with $n = 50$ and $p = 0.25$ (allow if seen previously) May be implied by M mark M1: use of Binomial (50, 0.25) to find a tail probability or a CR tail May be implied by a relevant probability e.g. $P(X_n, 7) = 0.0453$, $P(X_n, 19) = 0.986$, $P(X_n, 20) = 0.0139$ For this mark allow 2sf or better.				
(b)	Watch out for $P(X = 6) = 0.0123$, $P(X = 7) = 0.02586$, $P(X = 18) = 0.0262$ which on their own score M0 as these are not tail probabilities. A1: both correct probabilities seen (condone awrt 0.0193 and awrt 0.0288) A1: correct CR oe e.g. $X < 7$, $X > 18$ Condone X,, 6 and X19				
(c)	B1ft: awrt 0.048 or ft their two-tailed CR from $B(50, p)$ to 2sf accuracy Each tail probability must be < 0.05				
(d)	 B1: correct inference in context. Do not allow contradictory non-contextual statement e.g. 'Reject H₀' or '10 is in CR' Allow 'proportion' or 'probability' or 'percent(age)/%' but not 'number'. 'Rylan's hypothesis is not supported' is B1, but 'Rylan's hypothesis test is not supported' is B0. 				

Discrete Distributions - Binomial - Year 1 Statistics

Jue	stion	Sch	neme	Marks	AOs		
3(a)(i)		<i>X</i> ~B(15, 0.48)		M1	3.3		
		P(X=3) = 0.019668 awrt 0.0197		A1	3.4		
(ii)		$\left[P(X \ge 5) = 1 - P(X \le 4) \right] = 0.92$	013 awrt 0.920	A1	1.1b		
				(3)			
(b)		<i>Y</i> is the number of hits	<i>M</i> is the number of misses				
		$Y \sim N(120, 62.4)$	$M \sim N(130, 62.4)$	B1	3.3		
		$P(X > 110) \approx P(Y > 110.5)$	$P(X > 110) \approx P(M < 139.5)$				
		$\left[= P\left(Z > \frac{110.5 - "120"}{\sqrt{"62.4"}}\right) \right]$	$\left[= P\left(Z < \frac{139.5 - "130"}{\sqrt{62.4"}} \right) \right]$	M1	3.4		
		= 0.88544		A1	1.1t		
				(3)			
		I		(6 n	narks		
			Notes:				
(a) (i)	M1 A1	Allow for ${}^{15}C_3 \times 0.48^3 \times 0.52^{12}$ as this is "correct use" Condone B(0.48, 15)					
(ii)	A1	awrt 0.920 (Allow 0.92)					
(h) (b)	B1	Setting up a correct Normal model. Allow sight of $N(120, 62.4)$ or $N(130, 62.4)$ or					
		N $\left(120, \frac{312}{5}\right)$ or N $\left(130, \frac{312}{5}\right)$ or may be awarded if used correctly in or in words: <u>Normal</u> with <u>mean = 120/130</u> and <u>variance = 62.4</u> or sd = $\sqrt{62.4}$ condone N $\left(120, \sqrt{62.4}\right)$ or N $\left(130, \sqrt{62.4}\right)$ Look out for $\sigma = \frac{\sqrt{1560}}{5}$ or $\frac{2\sqrt{390}}{5}$ or awrt 7.90 (condone 7.9)			or		
		or in words: <u>Normal</u> with <u>mean =</u> <u>variance = 62.4</u> or sd = $\sqrt{62.4}$ co Look out for $\sigma = \frac{\sqrt{1560}}{5}$ or $\frac{2\sqrt{390}}{5}$	$\frac{120/130}{120, \sqrt{62.4}}$ or N(130, $\sqrt{62.4}$) or N(130, $\sqrt{62.4}$) or awrt 7.90 (condone 7.9)	tandardisa	tion		
	M1	or in words: <u>Normal</u> with <u>mean =</u> <u>variance = 62.4</u> or sd = $\sqrt{62.4}$ co Look out for $\sigma = \frac{\sqrt{1560}}{5}$ or $\frac{2\sqrt{390}}{5}$ This may be implied by sight of 0.	$\frac{120/130}{120, \sqrt{62.4}} \text{ or } N(130, \sqrt{62.4})$ or N(130, $\sqrt{62.4}$) or N(130, $\sqrt{62.4}$) or awrt 7.90 (condone 7.9) .897 or 0.885 4	tandardisa	tion		
	M1	or in words: <u>Normal</u> with <u>mean =</u> <u>variance = 62.4</u> or sd = $\sqrt{62.4}$ co Look out for $\sigma = \frac{\sqrt{1560}}{5}$ or $\frac{2\sqrt{390}}{5}$ This may be implied by sight of 0. Sight of the continuity correction	$\frac{120/130}{120, \sqrt{62.4}} \text{ or } N(130, \sqrt{62.4})$ or N(130, $\sqrt{62.4}$) or N(130, $\sqrt{62.4}$) or awrt 7.90 (condone 7.9) .897 or 0.8854 with a normal distribution	tandardisa	tion		
	M1	or in words: <u>Normal</u> with <u>mean =</u> <u>variance = 62.4</u> or sd = $\sqrt{62.4}$ co Look out for $\sigma = \frac{\sqrt{1560}}{5}$ or $\frac{2\sqrt{390}}{5}$ This may be implied by sight of 0.	$\frac{120/130}{120,\sqrt{62.4}} \text{ or } N(130,\sqrt{62.4})$ or $N(130,\sqrt{62.4})$ or $N(130,\sqrt{62.4})$ or awrt 7.90 (condone 7.9) .897 or 0.8854 with a normal distribution 139.5 or 140.5 or 138.5	$(\overline{4})$ or $sd =$	tion 62.4		
	M1	or in words: <u>Normal</u> with <u>mean =</u> <u>variance = 62.4</u> or sd = $\sqrt{62.4}$ co Look out for $\sigma = \frac{\sqrt{1560}}{5}$ or $\frac{2\sqrt{390}}{5}$ This may be implied by sight of 0. Sight of the continuity correction of 110.5 or 111.5 or 109.5 NB we will also allow 129.5 or 13 128.5 Continuity correction may be seen NB No continuity correction(CC)	$120/130$ and ondone N (120, $\sqrt{62.4}$) or N (130, $\sqrt{62.4}$) $\overline{0}$ or awrt 7.90 (condone 7.9) .897 or 0.8854 with a normal distribution 139.5 or 140.5 or 138.5 80.5 or NB we will also allow 120 121.5	tandardisa $\overline{4}$ or sd = 0.5 or 119. <u>CC seen</u>	62.4 5 or		

PMT

Discrete Distributions - Binomial - Year 1 Statistics

Q	u	Sch	eme		Marks	AOs
4(8	a)	$\left[P(L < 7.902) = 0.025 \Longrightarrow \right] \frac{7.902 - 8}{x} = -1.96 \text{ oe}$		M1	3.4	
		[x=]]0.05 *		A1cso*	1.1b
		SC B1(mark as M0A1) for $\frac{7.902 - 8}{0.05} = -$	$-1.96 \Rightarrow 0.0$	24998		
					(2)	
(b)	$P(7.94 \le L \le 8.09) = 0.8490$		awrt 0.849	B1	1.1b
				(1)		
(c)	[P(L < 7.94) =] 0.115069(awrt 0.115)	or $[P(L > 8)]$	(.09) =] 0.03593 (awrt 0.036)	B1	1.1b
	[[P(L < 7.94) =] 0.115069(awrt 0.115) & [P(L > 8.09) =] 0.03593(awrt 0.036)			B1	1.1b
		Expected income per 500 rods = $\sum (Income for a rod for$	come × prob	ability $\times 500$)		
		$(500 \times "0.849" \times 0.5) + (500 \times "0.1150")$	/ (00×"0.03593"×0.4) or	M1	3.4
	Expected profit per rod = \sum (Profit × probability) 0.30×"0.849"+-0.15×"0.1150"+0.20×"0.03593" [= 0.2446]					
		Expected profit per 500 rods $500 \times \sum (\text{Profit} \times \text{probability}) \text{ or } \sum (\text{Income} \times \text{probability} \times 500) - 500 \times 0.2$ $= 500 \times "0.2446" \text{ or } = "222.3" - 500 \times 0.2$			M1d	3.1b
	-	= [£]122.3	210 00011	awrt [£]122	A1	1.1b
(d	l)	Let $X \sim B(200, 0.015)$			(5) M1	3.3
		$P(X \leq 5) =$	$P(X \ge 6)$	=	M1	1.1b
		0.9176		0.0824	A1	1.1b
		Manufacturer is unlikely to achieve their aim since $0.9176 < 0.95$		rer is unlikely to achieve their $0.0824 > 0.05$	A1ft	2.4
			No4oga		(4)	
(a)	Μ	Notes: Using the normal distribution to set up equation. Allow σ for x and awrt ± 1.96		(12 11	narks)	
(u)	A				king seen	
(b)						
(c)	B	awrt 0.115 (Implied by awrt 57.5 for number of rods) or awrt 0.036 (Implied by awrt 18 for numb of rods)				umber
	B 1	awrt 0.115 (Implied by awrt 57.5 for number of rods) and awrt 0.036 (Implied by a number of rods)				
	М	1 Correct method to find the total income extras or Correct method to find sum of all the		-		
	M1(work in pence but need to be consistent. Allow awrt 24.5 or 0.245 Dep on previous method for finding profit for 500 rods. May work in pence but need to be consistent. Allow "0.2446"×500 or "their income" for 500 rods – 500×0.2 (accept 499 or 100 rots) 				or 501)
(d)	A1 M	All previous marks must be awarded for awrt 122 awrt 12200p NB if uses any integer values for numbers of rods then it is A0 other than for 18 for Selecting the appropriate model. May be seen or used. Allow B(200.0.985) or Po(or $L > 8.09$	
	М	Writing or using $P(X \leq 5)$ Do not acc	cept	Writing or using $P(X \ge 6)$ Do		t
		$P(X < 6)$ unless found $P(X \le 5)$		P(X > 5) unless found $P(X)$	≥6)	
	A			0.08 or better		
A1ftNeed at least one of the method marks to be awarded. Correct conclusion with the be in words). Ft "their $p = 0.9176$ " as long as $p > 0.9$ If "their 0.9176"<0.9 unlikely If "their 0.9176">0.95 they must say be likely To ft the alter				> 0.9 If "their 0.9176" < 0.95	must be	e

Qu 5	Scheme	Ma	rks	AO	
(a)	Comment in context about either independence or random packing e.g. " <u>prizes</u> must be placed in <u>packets</u> at <u>random/independently</u> of each other" <u>or</u> about constant probability e.g. "the <u>probability</u> of a <u>packet</u> containing a <u>prize</u> is <u>constant/ the same/fixed</u> "			3.5b	
(b)(i)	[P(T=6) =] 0.17273 awrt 0.173	B1	(1)	1.1b	
(ii)	$[P(T < 3) = P(T_{1}, 2) =] 0.061587 awrt 0.0616$	B1	(2)	1.1b	
(c)	[K= no. of boxes with fewer than 3 packets containing a prize] $K \sim B(5, "0.0616")$	M1		1.1b	
	P(K=2) = 0.031344 in the range [0.0313~0.0314]	A1	(2)	1.1b	
(d)	$H_0: p = \frac{1}{7}$ $H_1: p < \frac{1}{7}$	B1	(-)	2.5	
	[X = no of packets containing a prize] X~B(110, $\frac{1}{7}$)	M1		3.3	
	$[P(X_{,,}9)] = 0.038292$	A1		3.4	
	[Significant result <u>or</u> reject H_0]	A1		2.2b	
	E.g. there <u>is</u> evidence to <u>support</u> Kamil's <u>claim</u>		(4)		
		(9 n	nark	s)	
	Notes			,	
	 <u>random</u> packing or packets filled <u>independently.</u> Should mention key words/ideas of: <u>prizes</u> in <u>packets</u> or <u>packets</u> in <u>boxes</u> May use idea of constant probability. Must see key words underlined in scheme. Idea of probability with "independence" or "not affected by other packets" is B0 B0 for: Idea of only 2 cases. E.g. <u>Packet</u> contains a <u>prize</u> or not <u>or</u> Idea of a fixed number of trials. E.g. Need a <u>fixed</u> number of <u>packets</u> in each <u>box</u> 				
(b)(i) (ii)	B1 for awrt 0.173 B1 for awrt 0.0616				
(c)	M1 for sight of B(5, "0.0616") or ${}^{5}C_{2}("0.0616")^{2}(1-"0.0616")^{3}$ ft their answer to (b)(ii). A1 for an answer in the range [0.0313 to 0.0314] Use of 0.0616 gives 0.031356ans only 2/2				
(d)	B1 for both hypotheses correct in terms of <i>p</i> or π M1 for selecting an appropriate model, may be implied by 1 st A1 or P(X = 9) = 0.0199(2) 1 st A1 for 0.038 or better <u>or</u> allow 0.04 with sight of P(X , 9)				
ALT					
Normal	Do not award 2 nd A1 for contradictory statements e.g. "not significant" so "supports claim" Sight of N $\left(\frac{110}{7}, \frac{660}{49} \text{ or } awrt 13.5\right)$ or probability of 0.045(20) or 0.033(66) scores M1				